Attribute Suppression with Multi-Layer Perceptron
نویسنده
چکیده
In this paper, we introduce a method that allows to evaluate efficiently the “importance” of each coordinate of the input vector of a neural network. This measurement can be used to obtain informations about the studied data. It can also be used to suppress irrelevant inputs in order to speed up the classification process conducted by the network.
منابع مشابه
Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملPredictive Modeling of Forecast Uncertainty in the Route Availability Tool (RAPT)
MIT Lincoln Laboratory has developed the Route Availability Planning Tool (RAPT), which provides automated convective weather guidance to air traffic managers of the NYC metro region. Prior studies of RAPT have shown high-accuracy guidance from forecast weather, but further refinements to prevent forecast misclassification is still desirable. An attribute set of highly correlated predictors for...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملNew full adders using multi-layer perceptron network
How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...
متن کاملA New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS
The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...
متن کامل